UU阅书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

如果说“感知机”是单个的神经元,那么“多层感知机”就是将分散的神经元,连接成了网络。

在输入层和输出层之间,再加入若干层,每层若干个神经元。

然后每一层的每个神经元,与下一层的每个神经元,都通过权重参数建立起连接……

层与层之间,完全连接。

也就是说,第i层的任意一个神经元,一定与第i+1层的任意一个神经元相连。

这就是多层感知机,简称MLP。

但仅仅简单组合在一起,还不算真正的“人工神经网络”,必须对“感知机”的基本结构,做出一定的改进。

首先,必须加入隐藏层,以增强模型的表达能力。

隐藏层可以有多层,层数越多,表达能力越强,但与此同时,也会增加模型的复杂度,导致计算量急遽增长。

其次,输出层的神经元允许拥有多个输出。

这样模型就可以灵活地应用于各种分类回归,以及其他的机器学习领域,比如降维、聚类等。

此外,还要对激活函数做出扩展……

前一篇“感知机”论文中,主要使用的是阶跃函数sign,虽然简单易用,但是处理能力有限。

因此神经网络的激活函数,一般使用其他的非线性函数。

备选的函数有很多:sigmoid函数,tanh函数,ReLU函数……

江寒逐一进行了分析。

通过使用多种性能各异的激活函数,可以进一步增强神经网络的表达能力。

对于二分类问题,只需要一个输出神经元就够了。

使用sigmoid作为激活函数,来输出一个0到1之间的数值,用来表示结果为1的概率。

对于多类分类问题,一般在输出层中,安排多个神经元,每个分类一个。

然后用softmax函数来预测每个分类的概率……

描述完结构之后,就可以讨论一下“多层感知机”的训练了。

首先是MLP的训练中,经典的前向传播算法。

顾名思义,前向传播就是从输入层开始,逐层计算加权和,直到算出输出值。

每调整一次参数值,就需要重头到尾重新计算一次。

这样运算量是非常大的,如果没有强大的硬件基础,根本无法支撑这种强度的训练。

好在现在已经是2012年,计算机性能已经足够强悍。

前向传播无疑是符合直觉的,缺陷就是运算量很大,训练起来效率比较差。

与“感知机”的训练相比,MLP的训练需要引入损失函数和梯度的概念。

神经网络的训练,本质上是损失函数最小化的过程。

损失函数有许多种选择,经典的方法有均方误差、交叉熵误差等,各有特性和利弊。

整个训练过程是很清晰的。

先随机初始化各层的权重和偏置,再以损失函数为指针,通过数值微分求偏导的办法,来计算各个参数的梯度。

然后沿着梯度方向,以预设的学习率,逐步调整权重和偏置,就能求得最优化的模型……

写完这些就足够了,再多的内容,可以安排在下一篇文章里。

不过,江寒想了想,觉得这篇论文的内容,还是有点过于充实。

仔细琢磨了一下,干脆将其一分为二。

多层感知机的结构和前向传播的概述部分,单独成篇。

神经网络训练中,关于激活函数和损失函数讨论的部分,再来一篇。

然后分开投稿,这样不就可以多拿1个学术点了?

反正学术点又不看字数……

当然,这两篇论文都必须以前一篇的感知机为基础,分别进行阐述,而不能互为前提、互相引用。

这样就需要多动点脑筋了。

江寒又花了一个多小时,才将它们全都补充完整,并丰满起来。

接下来校队、润色一番后,翻译成英文,转换PDF……

投稿的时候,江寒仔细琢磨了一下,在三区里选了两家方向对口的期刊,投了出去。

没有选择影响因子更大的二区或一区期刊。

因为二区以上的期刊,虽然影响因子更高,发表后收获的学术点也多。

但发表难度太大,万一被打回来,再重新投递……

时间耽搁不起。

要知道,江寒只有三个月的时间。

一系列操作下来,差不多就到了10点半。

江寒脱掉外衣,去洗了个澡,然后换上睡衣。

忙了一下午带一晚上,直到这时才闲了下来。

然后他就想起了夏雨菲,也不知道她下午过得好不好,开不开心?

一股深切的思念,从心底涌出。

拿过手机,指纹解锁。

这才发现,有好多条未读微信。

写论文的时候太投入,根本听不到提示音。

点进夏雨菲的聊天界面,就看到了一排文字消息。

“在哪呢?”

“终于写完作业了,好累啊。”

“你在忙什么?”

“看来真的很忙,都没时间看微信了。”

“先睡了,明天还要上学……”

……

除了第一条是放学时间发来的,后面几条都来自10点之后,差不多5分钟一条。

“这傻姑娘,我没回复微信,也不说拨个电话或者语音通话……”

江寒叹了口气,发了个表情图过去。

夏雨菲很快就回复:“忙完了吗?”

江寒微微一笑。

这个时间她还没睡,莫非在一直等着我回复?

前一阵天天哄她上床,不会已经养成了习惯吧?

一天不哄,就睡不着……

“嗯,正准备休息,刚上床。”江寒回复。

夏雨菲:“那你赶紧休息吧,别太劳累了。”

江寒笑了笑,拨了个语音通话。

“喂?”夏雨菲秒接。

江寒声音温和:“想我了没?”

“没有。”

江寒微微一笑。

否认得这么干脆?

那就是想了。

女孩子的话,有时候就得反着听……

“想我你就打个电话,要不拨个语音通话,微信我有时不能及时看到。”江寒温和地嘱咐。

夏雨菲沉默了一小会儿,低声说:“我担心你在忙,别再耽误了你的正事……”

江寒笑了笑:“你要是一直都这么懂事,我可就有点舍不得欺负你了啊。”

夏雨菲脸一红。

他所说的“欺负”,不知道到底是哪种“欺负”?

那自己以后,到底是应该始终这么“懂事”,还是偶尔也“不懂事”一次呢?

“你在哪了?”夏雨菲不敢深想,就没话找话。

“酒店里。”江寒实话实说。

“嗯?”夏雨菲有点意外,“怎么没回寝室?”

“寝室里有点闹,我想专心研究点东西。”江寒回答。

“哪家酒店?”夏雨菲问。

“星河。”

“条件怎么样?”夏雨菲又问。

“还行。”江寒回答。

“你刚才说什么?”夏雨菲好像没听清楚。

“我说还行。”江寒稍微提高音量。

“什么?”夏雨菲仍然没有听清。

“信号怎么忽然变差了……”

那边嘀咕了一声,然后通话就突然中断了。

江寒正打算重拨,一个视频通话的邀请,忽然跳了出来。

视频……

不会是学人家查岗吧?

UU阅书推荐阅读:隐姓埋名二十年,崛起先杀白月光海贼的狂风镰鼬捡回家的班花太黏人,我遭老罪了全能少女UP主人在家中坐,萝莉天上来重生后,我只想混娱乐圈全民转职:开局觉醒反社畜技能桃运修真者漫漫修真路,一人独登仙陌上花开为君归盛世良后前男友爆红后我被迫官宣了深山林场:重返83打猎发家妖女满堂?明明是仙子忠诚!在民族资产的路上邻家妹子爱上我重生之学霸无双前妻离婚无效头顶青青草原,老实人的憋屈重生爆宠甜妻:总裁,坏死了!让你带娃,你给我科技整活?无限背包与无限轮回这个残王我罩了甜心攻略:我和国民学姐超甜cp位面之子清除计划都市重生:我在七日世界刷神宠荼蘼绝恋绍宋之后楚氏风华绝品高手混花都四合院:开局先打断何雨柱的手直播科普帝皇铠甲,国家疯狂打榜夭寿啦!怎么友谊又变质了?邻家姐妹竟是情敌重生之都市大神开局挖到尸体,直接觉醒系统算力增加我变强封少的掌上娇妻重生高中时代:许你人间繁华带着房子穿女尊钓系公主不追了,清冷首辅火葬场最强兵王重出江湖武道等级一亿级,斩杀神灵如屠狗被研究所开除,反手研究基因药剂我的功法来自一万年后重生之我的九零年代绝命阴差重生缅北:再次踏上逃亡之旅四合院:傻兄傻弟名门俏医妃
UU阅书搜藏榜:小楼大厦大国中医潇洒离婚后,她藏起孕肚成首富!予你熠熠星光小祖宗她是顶流大佬的心尖宠平淡的水乡生活绑定慈母系统后,我摆烂了凰妃逆天下玄学大佬被乖兮兮的奶狗缠疯了林域守从长征开始:十军团的绝境血路接单相亲,美女总裁赖上我直播打假,开局800页保险护体我和我姐一起穿越了魔族少年闯人间四合院:从逃荒开始逆天十八线艺人搞副业,天天跑警局穿书:我被疯批反派夜夜盯到腿软小市场住手!这不是游戏世界!才女清照权斗觉醒时代:我的队友全是觉醒女神神豪花钱系统!医品嫡妃:娇宠偏执摄政王重生之寒门吝啬媳八零后少林方丈史上最强斩妖师道吟重生黑客女王:冷少追妻忙第99次心动娘亲有点拽我家有只九尾狐腹黑竹马:小青梅,吃不够!被团宠成顶流后,她掉马了最强老公:独宠软萌小甜妻圣灵魔法师绝品医妃:误惹腹黑王爷顶流宠妃倾天下总裁老公惹不得我是修士,你们怎么跟我玩修真到异世求求你出道吧穿越后我靠混吃等死苟成了终极大佬慢穿之璀璨人生蚀骨婚情:前夫,请止步人在终极,开局时空之子美人犹记总裁三观不太正五行天
UU阅书最新小说:八零后考清华:我靠读书报恩全家时空错位之穿越时空布袋:我在两界倒腾银元一身满级武魂,碾压全球很合理吧!我有一张万能床重生东北小山村渔猎两江两国再有来生回到八岁娱乐:让你接地气,你去接白活儿轮回亿万世,我居然有女儿了?人在收购部,囤粮娇养女知青我的30岁绝色女房东都市神豪:开局解锁一亿亿资产我的南京爱情故事抗日特战队重来我进华娱走一遭北平判官,白日剃头夜开天灵!气运系统:我以残躯镇诸国!天官证道录每年一种新异能,大一斩尽鬼神!我的五个绝色千金老婆看个比赛,把主持人拐回家了天劫狂追?我只想活!间谍之唐人街鉴宝王重生火红时代,狩猎58你假死嫁白月光在先,我再婚你哭什么高考落榜后:我手搓热气球空降白宫我是个假中医鞋厂女工论道,她知道那么多!被白月光抛弃后,神秘人奖励我千亿重生在1990的海风里真少爷的我,太受宠了!修真弟子爱逍遥夺少?仨个索伦森你要上天!天灾与新生离婚后,高冷女总裁赖上我不要逼我当村霸传承墨家大佬,我直播打假!龙啸克什米尔重生80年代的神经病赘婿踏雪四合院:开局带妹,暴打全院禽兽深蓝锈蚀从SSS级监狱走出的男人重生之开局贷款买万套房既然你选择男闺蜜,离婚你哭什么说好做游戏,五千年历史什么鬼?穿越回曾经的时光超维武道通神一号狱龙施法永久加生命,阁下如何应对