UU阅书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 167 章 方程根的个数之探秘

数日匆匆而过,学府内的书香依旧弥漫。戴浩文再次踏上那熟悉的讲台,新的知识篇章即将在学子们的期待中缓缓展开。

“诸位学子,前番我们在数列的世界中探寻智慧,今时今日,吾将引领尔等步入方程根的个数这一神秘领域。”戴浩文声音朗朗,目光扫过一众学子。

众学子正襟危坐,眼神中满是对新知识的渴求和好奇。

戴浩文轻挥衣袖,于黑板之上写下一道方程:“x2 - 5x + 6 = 0。”

“吾等先观此简单之例,求解方程之根,诸位当如何为之?”戴浩文问道。

有学子起身答道:“先生,可用因式分解之法,化为 (x - 2)(x - 3) = 0,得根为 2 与 3。”

戴浩文微微颔首:“善。然今所论者,非仅求其根,而在探究此类方程根之个数。”

他继而说道:“若方程为二次方程 ax2 + bx + c = 0,其判别式 Δ = b2 - 4ac 便为关键。当 Δ > 0 时,方程有两个不同之实根;当 Δ = 0 时,方程有两个相同之实根;当 Δ < 0 时,方程无实根。”

众学子听闻,纷纷低头记录。

戴浩文又举例道:“如方程 x2 + 2x + 1 = 0,其中 a = 1,b = 2,c = 1,Δ = 22 - 4x1x1 = 0,故而此方程有两个相同实根,即为 -1。”

为使学子们更明其理,戴浩文令学子们各自出题,相互求解判别式并判断根的个数。一时间,课堂内讨论之声四起,学子们或蹙眉思索,或欣然交流。

待众人稍有领悟,戴浩文话锋一转:“二次方程之理,诸位已略知一二。然方程之形多样,诸如三次方程、四次方程,乃至更高次方程,又当如何探究其根之个数?”

众学子面面相觑,皆感困惑。

戴浩文微笑道:“莫急。吾先以三次方程为例。”他在黑板上写下方程:“x3 - 6x2 + 11x - 6 = 0。”

“求解此类方程,需综合运用因式分解、试根等法。吾先试 x = 1,代入方程,发现等式成立,故 x - 1 为其一个因式。”戴浩文边说边演示。

经过一番推演,方程化为 (x - 1)(x - 2)(x - 3) = 0,“由此可知,此方程有三个实根,分别为 1,2,3。”

“至于更高次方程,其解法更为复杂,常需借助函数之图像,以观其走势,判断根之个数。”戴浩文继续讲解。

他画出函数 y = x3 - 6x2 + 11x - 6 的图像,“观此图像与 x 轴之交点,便知方程根之个数。”

学子们盯着图像,似有所悟。

戴浩文又道:“亦有一类方程,难以直接求解,如超越方程。例如,e^x - 2x - 1 = 0。”

他解释道:“此类方程,吾等可通过函数单调性、极值等性质来推断根之个数。先求其导数,判断函数增减区间,再观其极值。”

戴浩文详细地推导着,学子们跟随着他的思路,努力理解着其中的奥妙。

时光悄然流逝,已至正午,阳光透过窗棂洒入教室,但学子们浑然未觉,沉浸于知识的海洋。

“今日所学,颇为深奥,诸位需在课后多加琢磨。”戴浩文说道。

下午课程伊始,戴浩文继续深入探讨方程根的个数问题。

他在黑板上写下一道含参数的方程:“x2 + mx + 1 = 0。”

“若此方程有实数根,求参数 m 之取值范围。”戴浩文抛出问题。

学子们纷纷动笔演算。戴浩文则在台下巡视,观察学子们的解题思路。

少顷,戴浩文走上讲台,开始讲解:“由判别式 Δ = m2 - 4,若方程有实根,则 Δ ≥ 0,即 m2 - 4 ≥ 0,解得 m ≥ 2 或 m ≤ -2。”

接着,他又给出几道类似的含参数方程,让学子们巩固所学。

“再看这道方程,”戴浩文又写下:“x3 - 3x + k = 0,已知其有且仅有一个实根,求 k 的取值范围。”

学子们再次陷入沉思。戴浩文提示道:“可先求导,分析函数单调性。”

经过一番思考和讨论,学子们逐渐找到了解题的关键。

戴浩文见众人有所领悟,心中甚喜,又道:“方程根之个数问题,亦与函数之零点定理相关。若函数 f(x) 在区间 (a, b) 内连续,且 f(a) 与 f(b) 异号,则在区间 (a, b) 内至少存在一个零点,即方程 f(x) = 0 在区间 (a, b) 内至少有一个实根。”

为让学子们更好地理解,戴浩文举例画图,详细阐述。

随后,戴浩文又列举了一些实际应用中的方程根的个数问题,如物体运动轨迹方程、桥梁受力方程等,让学子们明白方程根的个数问题在生活中的重要性。

课程接近尾声,戴浩文总结道:“方程根之个数,乃数学之重要内容,其理深邃,应用广泛。望诸君勤加研习,日后必能有所用。”

学子们虽感疲惫,但收获满满,眼中满是对未来学习的期待。

次日,戴浩文再次走进教室,开始检验学子们对昨日所学的掌握情况。

他在黑板上写下几道难题,让学子们上台解答。学子们有的思路清晰,顺利解题;有的则略显紧张,出现失误。戴浩文均一一耐心指导,纠正错误。

之后,戴浩文又针对学子们的薄弱环节进行了重点复习和强化训练。

“数学之途,永无止境。方程根之个数,仅是冰山一角。”戴浩文鼓励学子们,“只要汝等有恒心、有毅力,定能在数学之海洋中畅游无阻。”

在接下来的日子里,戴浩文不断变换教学方法,通过实例分析、小组讨论、专题研究等方式,加深学子们对方程根的个数的理解和应用能力。

学府内,学子们时常聚在一起,探讨方程之奥秘,学术氛围愈发浓厚。

一次考核中,学子们在方程根的个数相关题目上表现出色,戴浩文深感欣慰。然而,他深知教学之路漫长,仍需不断探索创新,引领学子们走向更高深的数学殿堂。

春去秋来,学府内的学子们在戴浩文的教导下,在数学的道路上稳步前行,不断追求着真理与智慧。

UU阅书推荐阅读:楚天子男儿行藩王两年半,一万大雪龙骑入京师大秦:开局祖龙先祖隋唐:被李家退婚,我截胡观音婢矛盾难以调和为了天下苍生,我被迫权倾天下大明:不交税就是通鞑虏东鸦杂货店盛嫁之庶女风华三国:从夷陵之战,打到罗马帝国长乐歌蒙古人西征不想当大名的武士不是好阴阳师马谡别传水浒:开局大郎让我娶金莲大汉废帝失忆美娇妻,竟是大周女帝明末小土匪神武太医俏女帝大秦:从缉拿叛逆开始养8娃到18,大壮在古代当奶爸打造异世界钢铁洪流关外县令穿越南宋当皇帝越战的血精灵之最强道馆训练家集齐九大柱石,重启大秦复兴之路明末:有钱有粮有兵我无敌!从大唐山峰飞跃而下爹爹万万岁:婴儿小娘亲锦衣盛明抗战游击队大唐开局救治长孙无垢汉武:普天之下,皆为汉土!逃兵开局:觉醒系统后我杀穿乱世清末大地主穿越成废物太子后我崛起了大魏霸主三国之凉人崛起造反我没兴趣,父皇别害怕大明:启禀父皇,我抓了北元皇帝风起了无痕存储诸天契约休夫:全能王妃逍遥世子爷三国:苟在曹营的二郎神棍大周逍遥王爷明末之席卷天下武道剑修林辰薛灵韵
UU阅书搜藏榜:抗战游击队我的大唐我的农场我在大宋当外戚在群里拉家常的皇帝们神话之我在商朝当暴君(又名:洪荒第一暴君)绝色大明:风流公子哥,也太狂了朕都登基了,到底跟谁接头楚牧有个妹妹叫貂蝉民国谍海风云(谍海王者)挥鞭断流百越王华之夏第一卷中原往事晚唐:归义天下大明极品皇孙,打造日不落帝国重生南朝开局逆天任务我三国武力话事人北朝奸佞造反!造反!造反!造反!造反!我主明疆抗战之血怒军团我在盘庚迁殷时发起翦商大汉奸臣英雌医鸣惊仙三国之佣兵天下大唐极品傻王救命,系统要害我始皇别伪装了,我一眼就认出你了开局被抓壮丁,从领媳妇儿开始崛起重生女尊世界但开局就进了送亲队烽火淞沪成亲后,我玩刀的娘子开始娇羞了大唐重生兵王北宋不南渡长安之上大明,我给老朱当喷子的那些年庶民崛起正德变法:捡到历史学生的书包穿越后被分家,搬空你家当大清疆臣。大秦反贼中华灯神回到明末做枭雄魅影谍踪他是言灵少女九灵帝君锦衣黑明大明:我想摸鱼,老朱让我当帝师谍战从特工开始老朱你说啥,我跟马皇后混的我爷爷可是大明战神
UU阅书最新小说:边军:从女囚营开始汉疆喋血风云录带着漫威回北宋历史中的酒馆大宋伏魔司全球帝国从明末开始真理铁拳岂独无故锁腰!高阳她哭哑了求饶重回1950:我为国家造核弹!大明王朝1424:夺舍明仁宗从小媳妇要传宗接代开始大周第一婿嫌我功高诬我谋反?我真反了!朕佣兵百万,你喊我废皇子?娘娘们别作妖,奴才要出手了说好当废皇子,你偷偷当皇帝?郑锦:我在南明的奋斗生涯冰临谷重生1980,从手搓歼8开始为国铸剑让你做赘婿,你在朝堂一手遮天?书圣?诗仙?首辅?没错,都是我大唐躺平王三藏还俗朕乃天命大反派,开局怒斩重生女帝从侯府废柴到一字并肩王你们夺嫡,我靠娇妻偷家赢麻了!大楚武信君大明:一次呼吸一两银,殖民全球!列强?大秦面前哪个敢称列强?称霸世界:从建立国防军开始穿成少帝后我靠物理登基大乾风云起苍穹带着现代军火系统闯大明寒门状元路大明国师,教朱棣治国,朱元璋来听墙根穿成农家子,妻妾越多,发家越快退婚夜,我被公主捡尸了穿越大雍:从瞎子到千古一帝大明:我是崇祯,亡国倒计时两天铜镜约大唐太子的开挂人生一身反骨,你叫我爱卿大唐:我李承乾,绝不被废唐代秘史衣冠谋冢英烈传奇灾荒年,全村啃树皮,媳妇嫌弃肉太肥了明朝的名义历史风口,我率领军队统一全球