UU阅书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

梅珑镇微笑着回应,那笑容如春日暖阳般温暖。她的眼神中满是温和与亲切,轻轻抬手,做了个请坐的手势,说道:“小萱,我也听说了你回来为家乡创业的事,真为你感到骄傲!咱们这一代接着一代努力,团结村的未来肯定充满希望。”

说着,她微微歪头,眼中闪过一丝好奇,“我最近了解到流体力学在光纤激光技术里有不少应用,感觉和我研究的领域有不少相通的地方,咱们正好可以好好探讨探讨,说不定能碰撞出不一样的火花。”

小萱眼睛一亮,兴奋得身体往前凑了一大截,双手紧紧交握在身前,仿佛在努力抑制内心的兴奋。她连忙说道:“太好了!梅阿姨,就拿散热系统设计来说,” 说着,她一边用手在空中生动地比划着散热通道的形状,一边解释,“光纤激光器在工作的时候会产生大量的热量,要是不能及时有效地散热,激光器的性能和稳定性都会大打折扣。我们现在利用流体力学原理,设计了液体冷却系统。” 说到这儿,她微微皱起眉头,眼神中透露出一丝忧虑,似乎回忆起了设计过程中那些棘手的难题,“通过冷却液在散热通道中流动来带走热量,依据对流换热理论,合理设计散热通道的形状、尺寸,还有冷却液的流速这些参数,确实能大大增强热量交换效率,保障激光器稳定运行。可是在实际操作中,想要确保冷却液均匀流动,不出现流动死角,真的太难了。我们尝试了很多次,效果都不太理想。”

梅珑镇认真地听着,不时轻轻点头,眼神专注地看着小萱。她微微眯起眼睛,陷入了沉思,片刻后说道:“这确实是个关键问题。” 说着,她抬起手托住下巴,思考得更深入了些,“我觉得可以借助一些模拟软件,像计算流体力学(cFd)模拟,提前对冷却液的流动情况进行全面分析,这样就能更精准地优化设计,说不定能更好地解决这个难题。通过模拟,我们可以提前看到不同设计方案下冷却液的流动状态,避免在实际操作中走弯路。”

小萱恍然大悟,眼睛一下子睁得大大的,忍不住拍了下自己的脑袋,说道:“梅阿姨,您这个建议太棒了!我之前怎么就没想到呢!” 她迅速地从口袋里掏出小笔记本和笔,身体微微前倾,笔尖在纸上快速舞动,认真记录下来,还不忘在旁边写下自己的一些思考和疑问。“对了,在激光增益介质研究方面,流体力学也起着至关重要的作用。” 她抬起头,眼神专注而明亮地看着梅珑镇,“有些光纤激光器采用液体增益介质,研究它的流动特性,能优化其在光纤中的分布和传输过程,提高激光产生的效率和质量。” 她一边说,一边用手指在空中画着光纤的形状,模拟增益介质在其中的流动,“而且,流体的粘性、表面张力这些因素,会影响增益介质在光纤中的填充效果,还有光与物质的相互作用过程,进而影响激光器输出性能。但这些因素相互交织,牵一发而动全身,研究起来特别复杂,感觉就像一团乱麻,很难理清头绪。”

梅珑镇耐心地听完,轻轻拍了拍小萱的肩膀,眼神中满是鼓励:“复杂是复杂了点,但也不是没有办法。科研不就是不断挑战难题的过程嘛。” 她微微侧头,思考了一下,“可以从基础实验入手,一步一个脚印,逐步研究各个因素的影响规律。比如先固定其他条件,单独研究粘性对增益介质填充效果的影响,这样或许能把问题简化一些。从简单的情况开始,慢慢积累经验,再去攻克更复杂的问题。”

小萱听后,眼睛里闪烁着感激的光芒,用力地点点头,在笔记本上又快速记录了几笔,还在重点内容下面划了线。接着,她又说道:“在光纤制造过程中,流体力学原理能优化拉丝工艺。玻璃原料融化后拉制成光纤时,玻璃液的流动状态对光纤质量和性能影响重大。” 她双手在空中做出拉伸的动作,模拟拉丝的过程,“精确控制玻璃液的流速、温度分布,还有拉丝过程中的应力分布,能保证光纤的直径均匀性和内部结构稳定性。不过,实际生产中要精确控制这些参数,对设备和技术的要求特别高。我们现有的设备在精度上还是差了一些,很难达到理想的效果。”

梅珑镇鼓励地笑了笑,眼神坚定而充满力量,说道:“这确实是个挑战,但也是机遇。你可以和设备供应商紧密合作,一起研发更先进的设备,满足精确控制的需求。把你的需求明确地告诉他们,双方共同努力,肯定能取得突破。说不定这次合作还能带动整个行业的技术进步呢!” 说着,她拍了拍小萱的手背,给予她力量和信心。

随后,小萱又和梅珑镇探讨起流体力学在激光谐振腔设计中的应用。小萱微微皱着眉,表情认真而严肃,说道:“在激光谐振腔设计里,散热优化特别重要。谐振腔内的光学元件受热不均,会产生热应力和热透镜效应,严重影响激光输出质量。” 她用手在空中仔细地描绘着谐振腔的轮廓,“我们可以利用流体力学原理设计冷却通道,通过cFd模拟来优化通道设计。还有模式控制,在谐振腔内引入流体结构,能控制激光的传播和模式分布,满足不同应用场景的需求。但找到合适的流体结构和控制参数,还需要大量的实验和研究。每次实验都像是在黑暗中摸索,不知道什么时候才能找到正确的方向,真的很考验耐心和毅力。” 说着,她无奈地摇了摇头,脸上露出一丝疲惫的神情。

梅珑镇看着小萱,眼神中带着肯定和鼓励,说道:“没错,这需要不断尝试和探索。科研的道路从来都不是一帆风顺的,每一次失败都是向成功靠近的一步。你可以参考一些类似领域的研究成果,说不定能找到新的思路。多看看别人是怎么做的,从中获取灵感,再结合自己的实际情况进行创新。” 她微微歪头,给小萱建议道。

UU阅书推荐阅读:隐姓埋名二十年,崛起先杀白月光捡回家的班花太黏人,我遭老罪了全能少女UP主人在家中坐,萝莉天上来重生后,我只想混娱乐圈桃运修真者漫漫修真路,一人独登仙陌上花开为君归前男友爆红后我被迫官宣了深山林场:重返83打猎发家妖女满堂?明明是仙子忠诚!重生之学霸无双头顶青青草原,老实人的憋屈重生爆宠甜妻:总裁,坏死了!让你带娃,你给我科技整活?这个残王我罩了都市重生:我在七日世界刷神宠绝品高手混花都四合院:开局先打断何雨柱的手直播科普帝皇铠甲,国家疯狂打榜夭寿啦!怎么友谊又变质了?邻家姐妹竟是情敌开局挖到尸体,直接觉醒系统封少的掌上娇妻重生高中时代:许你人间繁华带着房子穿女尊最强兵王重出江湖我的功法来自一万年后名门俏医妃光之巨人:我就是旧日支配者爱情公寓之顶层精英疯了吧!你管这叫务农?诸天影视:从照顾战友遗孀开始农家有儿要养成难道你还想建国开局获得系统,我被美女们盯上了超级至尊吹牛系统狐妖:再续前缘神秘复苏:只有我知道剧情异能狱警,不稳绝不出手开局成为世界之主穿越诸天开局签到厨神秘制灌汤包穿越到古代双修无敌归来我只想过的平静一些啊!扑倒小甜妻:老公,请亲亲!边境风云:林浩的荣耀之路开局救下女总裁,她竟然非我不嫁神尊豪婿冷王的独宠医妃四合院:我,街溜子,不讲武德
UU阅书搜藏榜:小楼大厦大国中医潇洒离婚后,她藏起孕肚成首富!予你熠熠星光小祖宗她是顶流大佬的心尖宠平淡的水乡生活绑定慈母系统后,我摆烂了凰妃逆天下玄学大佬被乖兮兮的奶狗缠疯了林域守从长征开始:十军团的绝境血路尘世浊浪之游戏人间接单相亲,美女总裁赖上我直播打假,开局800页保险护体我和我姐一起穿越了魔族少年闯人间四合院:从逃荒开始逆天十八线艺人搞副业,天天跑警局穿书:我被疯批反派夜夜盯到腿软小市场住手!这不是游戏世界!才女清照权斗觉醒时代:我的队友全是觉醒女神神豪花钱系统!医品嫡妃:娇宠偏执摄政王重生之寒门吝啬媳八零后少林方丈史上最强斩妖师道吟重生黑客女王:冷少追妻忙第99次心动娘亲有点拽我家有只九尾狐腹黑竹马:小青梅,吃不够!被团宠成顶流后,她掉马了最强老公:独宠软萌小甜妻圣灵魔法师绝品医妃:误惹腹黑王爷顶流宠妃倾天下总裁老公惹不得我是修士,你们怎么跟我玩修真到异世求求你出道吧穿越后我靠混吃等死苟成了终极大佬慢穿之璀璨人生蚀骨婚情:前夫,请止步人在终极,开局时空之子美人犹记总裁三观不太正
UU阅书最新小说:重生饥饿年代,地窖通山野肉管饱重生08,从高考状元到世界首富失忆后我带全家逆天改命股神风云我,流氓鹦鹉,让校花全网社死!重返二战其实我只想回家砍甘蔗娱乐:接地气的我,把杨老板气哭轮回纪之从凡骨到至高病娇大佬私有:小画家,乖乖听话纪元心轨娱乐:我的歌,引爆另一个时空无限加点,我枪挑高武万族神豪,开局法拉利报道我有三寸芒,可斩九天霜空间界临词条主宰:我的洞察能解析万物网赌输光后,两个美女先后找上门女神花钱给返利,奈何我是丑肥宅女友母亲怀孕残阳血土:天门冰城到沪上:火车炊事员重生逆袭怪兽觉醒时代,我觉醒上古英灵觉醒后,我成了修仙界显眼包华夏第一异能澳门小赌徒老婆,我真是废柴谁说这孩子出生,这孩子可太棒了重回2014:暴富从带兄弟开始开局被医闹,我反手赐她们绝症!长空正当时出狱后,我成了地下之王叶枫逆袭录觉醒灵泉空间我打满二战全场九棺寻魂:将军的摸金局末世兵王穿渣爹,反派女儿你别急这就是好莱坞大导吗?最强全能修仙混都市终极生命超凡临渊婚变之逆袭风云高武:我能看到万物词条和弱点系统佣兵:暗网公海开局一辆法拉利,每天花光一个亿岳母越骂我越强叛逆者:我穿越成了朱怡贞钓鱼佬绝不空军梦境世界:从零开始的狐妖日常官场沉浮:我的金手指是宿敌远征军后代被迫在缅北崛起建国重生后,我靠信息差躺成人生