UU阅书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

徐川刚转身走了两步,身后陶哲轩教授的邀请就过来了。

停下脚步,他有些疑惑的看了一眼,问道:“舒尔茨教授的报告会不是在明天上午九点吗?”

他之前看过这次数学交流会的形成安排,对于每一个值得他去听的报告时间都记得清清楚楚,舒尔茨教授的报告是他这次的重点目标之一。

舒尔茨教授和陶哲轩一样,是数学界的新星,不过他的年龄要小一些,今年还不到三十岁。

两人被数学界誉为双子塔,可见他们已经拉开了其他同龄人不小的差距。

“是的,原本是上午十点,但是w.t高尔斯教授临时有事情赶回剑桥了,所以今天下午的报告有一份提前了,这些东西应该发你邮箱了。”陶哲轩笑着解释道。

“哦,原来是这样,那麻烦陶教授了。”徐川点了点头,转身跟上陶哲轩的步伐。

“正好咱可以接着聊聊具分形边界的问题不是吗?”陶哲轩推了推眼镜框,笑着看向徐川。

.......

两人赶到舒尔茨教授所在报告会一号礼堂时,证明报告已经开始了。

找了个座位坐下,徐川望向了舞台上留着齐肩卷发的身影,开始认真的听讲。

这次普林斯顿的数学交流会,彼得·舒尔茨不出意料的讲解是他的最大成果‘类完美空间的数学概念’。

这是他在博士期间创造的一种数学工具,又叫做‘p·s进域-几何理论’。

这项理论让数学家得以借此证明代数几何和其他领域中的许多未解谜题,也将拓扑学、加罗瓦理论和p进数结合到了一起,构成了新的数学。

目前而言,这套理论在数学界很火,在数论领域更是独一无二的宠儿。

一方面是发明者舒尔茨本人利用这套理论对朗兰兹纲领做出来很多重大的突破,这引起了众多数学家的重视。

另一方面,则是p进数是数论领域的核心,比如怀尔斯教授在证明费马大定理的时候,几乎每一步都涉及到了p进数的概念。

而且目前数学界几乎一致认为,几何和代数的大统一的研究就可能在p进数上。

哦,顺带提一下,他之前的研究,weyl-berry猜想也有一部分和p进数有关系。

所以徐川对于舒尔茨教授的这一场报告会很重视,寄希望于从上面得到某些灵感,进而对weyl-berry猜想的谱渐近做出突破。

“徐,我们都知道p进ζ函数是p进l函数的一个例子,它体现了对应数域的解析性质,而coates-wiles和 an在明显互反律的工作表明上述多项式和 ch(e\/c)只是相差一个固定多项式。”

“你说如果选取一个合适的加罗德域作为有限交换群,是否能将代数对象等同于p-进解析对象?”

一旁,正认真坐着听讲的陶哲轩突然凑了过来,小声的询问道。

徐川皱了皱眉,问道:“岩泽理论的主猜想?”

陶哲轩点了点头,道:“嗯,刚刚在听舒尔茨教授讲解他的类似完备空间理论时有些启发,或许值得尝试一下,你怎么看?”

闻言,徐川紧皱起了眉头,思虑了一番后道:“考虑群环 zp[gn]构成的系,由于 gn到 gn?1之间存在自然限制映射,此系也存在射影极限Λ,事实上,Λ同构于以 zp为系数的幂级数环 zp[[t]],它被称做岩泽代数......”

“回到分圆 zp扩张的情形. kn的理想类群是有限交换群,记其 p部分是an.一方面,由于它是p阶群,有zp的作用;而另一方面 kn\/k的加罗瓦群作用在它上面,故 an是环 zp[gn]的有限模.由于 kn+1到 kn有自然的映射,我们可以得到 an+1到 an的自然映射......”

“从ch(a)= ch(e\/c).可以看出, a说明的是数域的理想类群,是一个纯粹的代数对象.而分圆单位本质上是一个解析对象。”

【推荐下,野果阅读追书真的好用,这里下载 .yeguoyuedu 大家去快可以试试吧。】

“从这个角度来看,想要用一个合适的加罗德域作为有限交换群,进而等同代数和p进数恐怕是一件很难的事情。”

闻言,陶哲轩陷入了沉思中,半响后才道:“但域群的有限扩张应该可以解决这个问题,这可以利用舒尔茨教授的类似完备空间理论,这套理论能做到将局部域上的算术问题简化表示为特定的特征及特征域的组合......”

徐川耸了耸肩,道:“抱歉,这方面我就不清楚了,舒尔茨教授的‘p·s进域-几何理论’我并不熟悉,不然今天我也不会坐到这里学习了。”

这方面他的确不熟悉,p·s进域-几何理论是代数与几何方面的东西,而p进数更是纯数论方面的,上辈子他基本没多少了解,刚刚他说的这些东西还是过年之前学些域扩张时了解的一些知识。

听到这话,陶哲轩才勐然惊醒过来:“哦,我差点忘了你今年才上大一,舒尔茨教授的类似完备空间理论对于大学生来说的确有点难懂。”

“不过你的学识真是让我吃惊,没想到除了谱渐近和具分形边界连通区域外,你对在群环和有限域上的理解也这么深刻。”

“你真的是一名还在读本科的大学生吗?或许你在未来可以更多的尝试深入了解一下这方面的内容。”

徐川笑了笑,道:“我正在这么做。”

闻言,陶哲轩感叹道:“看来在不久的将来,我们又将迎来一名数学界的新星。”

顿了顿,陶哲轩又接着道:“徐,不如你来加州大学读博如何?关于岩泽理论的主猜想我这边有一些思路,如果你感兴趣的话,我们可以一起来解决这个问题。”

“关于群域这方面的东西,我需要一个人帮助,你很合适,而且我们交流和愉快不是吗?”

一旁,一名来自阿根廷的数学教授一脸懵逼的看着陶哲轩和徐川。

wtf?

这两人在说什么东东?

很显然,这名数学教授全程听完了两人的聊天。

但遗憾的是,他一个字都没听懂。

嗯,也不能这么说,群域,加罗瓦域,岩泽理论这些关键词他是听懂了的。

可惜前后连起来他就不知道这两人说的是啥了。

他并不认识徐川,但认识陶哲轩教授。

一开始的时候他还以为这是陶教授带的学生,正庆幸自己能坐到大名鼎鼎的陶教授身边,准备在听完舒尔茨教授的报告后好好找陶教授请教一下的。

但随着时间的流逝,两人交流起来的时候他就懵了。

这年轻人,好像不是陶教授的学生的样子。

数学界什么时候新出了一个能这样和陶教授畅所欲言交流的新人?

他没听说过啊。

而且,陶教授亲自邀请过去读博,邀请一起参与岩泽理论的科研项目,这待遇.......

fk,他好羡慕,就像是坐在高高的柠檬山上一样,好酸!

.......。

UU阅书推荐阅读:刚到末世,被误认为黄金超人奖励末世特种兵之女主又美又飒血月下,废土生机诸天之盖世人皇奶龙与贝利亚:宇宙之中的欢笑量子缠结 末世狂飙旅行青蛙:在漫威世界混日子末世降临:黎明无限流:病娇男主总粘人落叶战记江山皇图我被涂山璟追着谈恋爱维度时代哥斯拉之强者之路这个地球全是BUG平行时光从白鲤开始天灾重生之海岛末世我代表地球联姻异界公主星际军火集团灵魂快穿:病娇男主你有毒我要单挑三体舰队末日已上线史上最牛主神重生成为虎王星界蚁族我娇养了一个恶人第一次引领者计划快穿之女主她有点病恐怖都市内求生:获得唯一天赋失落的遗迹探险我,时空管理局局长,加入聊天群土豪系统全球灵魂抽奖:只有我可挑奖励我的世界我来宠2824新世界墨道归元全球末世:开局杀重生者抢粮修行在影视空间末日狂欢起源异界海贼:玛丽乔亚也没写禁止钓鱼啊上神的一百种快穿日常我在九叔世界刷成就末世反派:化身黑暗,奴役众生气运男主要绝嗣,好孕女配来生崽超能机甲师进化红雾末世开局,拥有泰坦的我无敌了
UU阅书搜藏榜:微型世界:开局灭了一国糟了!1999年的事情瞒不住了鱼篮庭院快穿之拯救小娇妻穿越原神后魈自愿和我回家我又又恋爱了末日重生:我选择拯救世界全球求生:开局一座避难所全球降临之雪国求生天瞳术美漫也有妖气我编的百科词条成真了源力大时代最终之自我救赎末世:想要变强?唯有囤积女神!当学霸开了科技移动城佣兵协议末日:从学生到黑夜主宰诸天:开局一座明朝时空门万界第一纨绔星痕末世重生后要种田修仙登顶银河人生赢家金古武侠赋废土世界:从拾荒机器人开始单独降临:七十亿副本求生九叔之我竟然是秋生修神之至尊之道快穿:宿主她危险又撩人末世丧尸女王:男神,来撩!咒术法师逆转快穿:男主求攻略韩娱之大梦想末日求生:苟住别浪狗腿子切开是黑的捡个星际元帅当老公穿越诸天西幻荒野直播:人类崽崽震撼全星际网游之贼倾天下哇酷阿玛的搞笑小故事独独不说喜欢你某超赛亚人的世界之旅启灾厄末世重生:我成为了末世最强领主热血格斗家诡眼迷踪平凡末世路灵魂快穿:病娇男主你有毒
UU阅书最新小说:瘟疫孤岛陈默的生存日记世界末日,系统让我准备高考掌御虫群:开局夺舍金属虫巢无限吞噬全家被穿越了个忒!墨笔无丝:这是未来深渊镜界遨游星河我,开局觉醒神级复制!大学生意外穿书勇闯末日副本!千夜铃兰书末世:我的技能全随机末世校园:一双袜子开始的爱恋焚如未济末日王者颠覆冰封末世:打造属于我的安全屋未来的Al世界末世危机:全球异种降临命诡契约蓝星:黄昏前的黎明重生之病毒解析者新纪元:废土灵尊开局星际奴隶,签到成银河监管人沉迷末世刷经验,我的等级无上限红雾时蚀录末日葫芦冰河期危机游戏末日,我有万倍掉落我在废土开仙门序列逃生:我靠吃诡升级科技大佬重生,开局神级灵根神魔养殖:从重生星球后征战宇宙星骸王座:弃子的噬天之路全球裂隙:开局一座神级移动城熵火燎原:源芯觉醒穿越未来:3035年的中国世界与外星智慧体接触人族星际传奇末日:四人求生日记我在末世当人形测谎仪末日游戏:开局一座安全屋曙光纪元,伤痕,尘埃守护者嫌我维修工?S级跪求我续命!开局流刃若火,这末世我说了算!异星联盟军满点吞噬全球公敌:开局猎杀战神系统末世雷尊:我的女团能加点忠诚开局一声钟鸣,全球陷入沉睡西游科幻版